• Species react as a result of collisions of sufficient energy and proper orientation.
• The rate of reaction is expressed as the change in concentration of a particular reactant/product per unit time.
• Concentration changes in a reaction can be followed indirectly by monitoring changes in mass, volume and colour.
• Activation energy (Ea) is the minimum energy that colliding molecules need in order to have successful collisions leading to a reaction.
• By decreasing Ea, a catalyst increases the rate of a chemical reaction, without itself being permanently chemically changed.
• Description of the kinetic theory in terms of the movement of particles whose average kinetic energy is proportional to temperature in Kelvin.
• Analysis of graphical and numerical data from rate experiments.
• Explanation of the effects of temperature, pressure/concentration and particle size on rate of reaction.
• Construction of Maxwell–Boltzmann energy distribution curves to account for the probability of successful collisions and factors affecting these, including the effect of a catalyst.
• Investigation of rates of reaction experimentally and evaluation of the results.
• Sketching and explanation of energy profiles with and without catalysts.
• Calculation of reaction rates from tangents of graphs of concentration, volume or mass against time should be covered.
• Students should be familiar with the interpretation of graphs of changes in concentration, volume or mass against time.